Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
2.
Geroscience ; 46(3): 3481-3501, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38388918

RESUMO

Cerebrovascular fragility and cerebral microhemorrhages (CMH) contribute to age-related cognitive impairment, mobility defects, and vascular cognitive impairment and dementia, impairing healthspan and reducing quality of life in the elderly. Insulin-like growth factor 1 (IGF-1) is a key vasoprotective growth factor that is reduced during aging. Circulating IGF-1 deficiency leads to the development of CMH and other signs of cerebrovascular dysfunction. Here our goal was to understand the contribution of IGF-1 signaling on vascular smooth muscle cells (VSMCs) to the development of CMH and associated gait defects. We used an inducible VSMC-specific promoter and an IGF-1 receptor (Igf1r) floxed mouse line (Myh11-CreERT2 Igf1rf/f) to knockdown Igf1r. Angiotensin II in combination with L-NAME-induced hypertension was used to elicit CMH. We observed that VSMC-specific Igf1r knockdown mice had accelerated development of CMH, and subsequent associated gait irregularities. These phenotypes were accompanied by upregulation of a cluster of pro-inflammatory genes associated with VSMC maladaptation. Collectively our findings support an essential role for VSMCs as a target for the vasoprotective effects of IGF-1, and suggest that VSMC dysfunction in aging may contribute to the development of CMH.


Assuntos
Hipertensão , Músculo Liso Vascular , Receptor IGF Tipo 1 , Idoso , Animais , Humanos , Camundongos , Marcha , Hipertensão/genética , Hipertensão/complicações , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Receptor IGF Tipo 1/genética , Transtornos Neurológicos da Marcha/genética
3.
J Neurol ; 270(5): 2756-2764, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36790548

RESUMO

BACKGROUND: Freezing of gait (FOG) is a common disabling gait disturbance among patients with Parkinson's disease (PD), but the influence of genetic variants on the incidence of FOG has been poorly studied to date. OBJECTIVES: We aimed to evaluate the association of GBA variants with the risk of FOG development in a large early PD cohort. METHODS: This study included 371 early PD patients from the Parkinson's Progression Markers Initiative (PPMI) who were divided into a GBA variant carrier group (GBA-PD group, n = 44) and an idiopathic PD group without GBA variants (iPD group, n = 327). They were followed up for up to 5 years to examine the progression of FOG. The cumulative incidence of FOG and risk factors for FOG were assessed using Kaplan‒Meier and Cox regression analyses. RESULTS: At baseline, the GBA-PD group had lower CSF ß-amyloid 1-42 (Aß42) levels and more severe motor and nonmotor symptoms than the iPD group. During the 5-year follow-up, the GBA-PD group had a higher incidence of FOG than the iPD group, and the FOG progression rate was related to GBA variant severity. In the multivariable Cox model without CSF Aß42, GBA variants were significant predictors of future FOG, and the association remained significant after adding CSF Aß42 to the model. In the subgroup analyses, the effect of GBA variants was not observed in the "low-level" group. However, in the "high-level" group, GBA variants independently increased the risk of FOG, and this association was stronger than the association with CSF Aß42. CONCLUSION: GBA variants are novel genetic risk factors for future FOG development in early PD patients. This association seemed to be mediated by both Aß-dependent pathways and Aß-independent pathways.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Marcha , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/complicações , Incidência , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fatores de Risco
4.
Acta Neurol Belg ; 123(1): 221-226, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36609835

RESUMO

BACKGROUND: Mutations of the Glucocerebrosidase (GBA) gene are the most common genetic risk factor yet discovered for Parkinson's Disease (PD), being found in about 5-14% of Caucasian patients. OBJECTIVE: We aimed to assess motor and non-motor symptoms (NMS) in patients with GBA-related PD (GBA-PD) in comparison with idiopathic PD (iPD) subjects using standardized and validated scales. METHODS: Eleven (4 M, 7 F) patients with GBA-PD and 22 iPD patients, selected from the same cohort and matched for gender, age, and disease duration, were enrolled. The disease severity was assessed by Unified Parkinson's Disease Rating Scale-section III, gait disorder and falls by Freezing of Gait Questionnaire, and motor fluctuations by Wearing off questionnaire. NMS were evaluated using the following scales: Mini-Mental State Examination and extended neuropsychological battery, if required, Non-Motor Symptoms Scale, SCOPA-AUT Questionnaire, Apathy Evaluation Scale, Beck Depression Inventory, Epworth Sleepiness Scale, Restless Legs Syndrome Rating Scale, REM Sleep Behavior Disorder Screening Questionnaire, and Questionnaire for Impulsive-Compulsive Disorders in Parkinson's disease. RESULTS: GBA-PD patients showed a more severe and rapidly progressive disease, and more frequent positive family history for PD, akinetic-rigid phenotype, postural instability, dementia, and psychosis in comparison to iPD. Two of three subjects carrying L444P mutation presented with early dementia. We also found a higher occurrence of fatigue, diurnal sleepiness, and intolerance to heat/cold in the carriers group. CONCLUSIONS: Our results confirm that NMS and a more severe and faster disease course more frequently occur among GBA-PD patients in comparison to iPD.


Assuntos
Glucosilceramidase , Doença de Parkinson , Humanos , Demência , Transtornos Neurológicos da Marcha/genética , Glucosilceramidase/genética , Mutação , Doença de Parkinson/genética , Sonolência
5.
Cell Mol Neurobiol ; 43(3): 1129-1146, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35635601

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that lasts lifelong and causes noticeably higher premature mortality. Although the core symptoms and other behavioral deficits of ASD can persist or be deteriorated from early development to old age, how aging affects the behaviors and brain anatomy in ASD is largely unknown. DOCK4 is an ASD risk gene highly expressed in the hippocampus, and Dock4 knockout (KO) mice display ASD-like behaviors in adulthood (4- to 6-month-old). In this study, we evaluated the behavioral and hippocampal pathological changes of late-middle-aged (15- to 17-month-old) Dock4 male KO mice. Aged Dock4 KO mice continuously showed similar social deficit, elevated anxiety, and disrupted object location memory as observed in the adulthood, when compared to their wild-type (WT) littermates. Notably, Dock4 KO mice displayed an age-related decline of hippocampal dependent spatial memory, showing decreased spatial memory in Barnes maze than their WT littermates at late middle age. Morphological analysis from WT and Dock4 KO littermates revealed that Dock4 deficiency led to decreased mature neurons and oligodendrocytes but increased astrocytes in the hippocampus of late-middle-aged mice. Together, we report that ASD-like behaviors mostly persist into late-middle age in Dock4 KO mice, with specific alterations of spatial memory and hippocampal anatomy by age, thus providing new evidence for understanding age differences in behavioral deficits of ASD.


Assuntos
Hipocampo , Transtornos da Memória , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Envelhecimento , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Comportamento Animal , Aprendizagem em Labirinto , Transtornos do Comportamento Social/genética , Transtornos do Comportamento Social/metabolismo , Ansiedade/genética , Ansiedade/metabolismo , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo
6.
Parkinsonism Relat Disord ; 98: 7-12, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398727

RESUMO

BACKGROUND: Clinical-related risk factors to freezing of gait (FOG) in Parkinson's disease (PD) have been identified. Still, the influence of genetic variations on the FOG occurrence has been poorly studied thus far. AIM: We aimed to evaluate the association of six selected polymorphisms of DRD2, ANKK1, and COMT genes with the FOG occurrence and explore the influence of ANNK1/DRD2 haplotypes on the onset of FOG in the group of PD patients. METHOD: PD patients (n = 234), treated with levodopa for at least two years, were genotyped for the rs4680 in COMT, rs6277, rs1076560, and rs2283265 in DRD2, and rs1800497 and rs2734849 polymorphisms in ANKK1 genes. FOG was evaluated by posing a direct question. In addition, a comprehensive set of clinical scales was applied to all patients. RESULTS: FOG occurred in 132 (56.4%) PD patients in our cohort. Freezers were younger at PD onset, had longer disease duration, used higher levodopa daily doses and dopaminergic agents, and had higher motor and non-motor scales scores than non-freezers. FOG was more frequent among AA rs4680 COMT carriers than AG and GG rs4680 COMT carriers. Independent predictors of FOG were: disease duration of more than ten years, levodopa daily dose higher than 500 mg/day, motor status, and COMT AA genotype. AGGAA and GGAAA haplotypes were revealed as protective and vulnerability factors for FOG occurrence. CONCLUSION: In addition to previously identified disease- and therapy-related risk factors, our results suggested a possible contribution of dopamine-related genes to the FOG occurrence.


Assuntos
Catecol O-Metiltransferase , Transtornos Neurológicos da Marcha , Doença de Parkinson , Antiparkinsonianos/uso terapêutico , Catecol O-Metiltransferase/genética , Marcha/genética , Transtornos Neurológicos da Marcha/tratamento farmacológico , Transtornos Neurológicos da Marcha/genética , Humanos , Levodopa/uso terapêutico , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de Dopamina D2/genética
7.
Int J Neurosci ; 132(5): 439-449, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32938288

RESUMO

PURPOSE/AIM OF THE STUDY: Parkinson's disease (PD) is the second most common neurodegenerative disorder. Vitamin D deficiency is suggested to be related to PD. A genome-wide association study indicated that genes involved in vitamin D metabolism affect vitamin D levels. Among these genes, single nucleotide polymorphisms (SNPs) of the vitamin D receptor (VDR) and vitamin D binding protein (VDBP/GC) genes have also been demonstrated to be associated with PD risk. Our aim was to investigate the relevance of SNPs within the 7-dehydrocholesterol reductase/nicotinamide adenine dinucleotide synthetase 1 (DHCR7/NADSYN1) locus and vitamin D 25-hydroxylase (CYP2R1) gene, which encode important enzymes that play a role in the vitamin D synthesis pathway, with PD and its clinical features. MATERIALS AND METHODS: Genotypes of 382 PD patients and 240 cognitively healthy individuals were evaluated by a LightSNiP assay for a total of 10 SNPs within the DHCR7/NADSYN1 locus and CYP2R1 gene. RESULTS: There were no significant differences in the allele and genotype distributions of any of the SNPs between any patient groups and healthy subjects. However, our results indicated that all of the SNPs within the DHCR7/NADSYN1 locus and CYP2R1 gene, except rs1993116, were associated with clinical motor features of PD including initial predominant symptom, freezing of gait (FoG) and falls as well as disease stage and duration of the disease. CONCLUSIONS: In conclusion, genetic variants of the DHCR7/NADSYN1 locus and the CYP2R1 gene might be related to the inefficient utilization of vitamin D independent from vitamin D levels, and it might result in differences in the clinical features of PD patients.


Assuntos
Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida , Colestanotriol 26-Mono-Oxigenase , Família 2 do Citocromo P450 , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Doença de Parkinson , Vitamina D , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Colestanotriol 26-Mono-Oxigenase/genética , Família 2 do Citocromo P450/genética , Transtornos Neurológicos da Marcha/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Vitamina D/metabolismo , Deficiência de Vitamina D
8.
Brain Dev ; 44(1): 68-72, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34332824

RESUMO

BACKGROUND: Sex-determining region Y-box 2 (SOX2) plays an important role in the early embryogenesis of the eye, forebrain, and hypothalamic-pituitary axis. Anophthalmia, microphthalmia, and hormonal abnormalities are commonly observed in patients with SOX2-related disorders. Although gait disturbance, particularly ataxic gait, has recently been observed in several cases, detailed data regarding the clinical course of gait disturbance in SOX2-related disorders are limited. CASE REPORT: A 9-year-old Japanese boy presented with focal dyskinesia only during walking and running after he started walking at the age of 3 years. He also exhibited intellectual disability and mild dysmorphic features, including microcephaly, micropenis, and short stature associated with hormonal abnormalities. Gait disturbance with involuntary extremity movements only during walking and running was indicative of choreoathetosis and dystonia. Genetic analysis detected a de novo heterozygous 1.0-kb deletion including SOX2 at 3q26.32, as described in a previous technical paper. CONCLUSIONS: SOX2-related disorders should be considered in patients with some anomalies having a differential diagnosis of dyskinesia. Focal dyskinesia only during walking and running may be a characteristic feature of SOX2-related disorders.


Assuntos
Distonia/genética , Transtornos Neurológicos da Marcha/genética , Transtornos dos Movimentos/genética , Fatores de Transcrição SOXB1/genética , Criança , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/genética , Masculino , Deleção de Sequência , Síndrome
9.
Clin Neurol Neurosurg ; 208: 106895, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34419780

RESUMO

Hyperargininemia is an autosomal recessive disorder caused by a defect in the arginase I enzyme. We present a case of a 20-year-old male with severe spastic gait, intellectual disability and seizures. Metabolic tests revealed high levels of arginine in blood serum. Hyperargininemia was attributed to a likely pathogenic rare mutation of ARG1 gene [Chr6: g131905002_131905002 G>A (p.Arg308Gln) homozygous] detected in Whole Exome Sequencing resulting in deficiency in arginase I enzyme. Following the diagnosis, the patient has been treated with low protein diet, aminoacid and vitamin supplements. The accumulation of arginine, may contribute to the pathogenesis of severe neurological manifestations, however, low protein intake diet may lead to a favorable outcome. Therefore, clinicians should screen for hyperargininemia in early childhood in case of strong clinical suspicion.


Assuntos
Transtornos Neurológicos da Marcha/genética , Hiperargininemia/genética , Deficiência Intelectual/genética , Mutação , Convulsões/genética , Arginina/sangue , Transtornos Neurológicos da Marcha/sangue , Humanos , Hiperargininemia/sangue , Deficiência Intelectual/sangue , Masculino , Convulsões/sangue , Sequenciamento do Exoma , Adulto Jovem
10.
Iran J Allergy Asthma Immunol ; 20(2): 249-254, 2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33904683

RESUMO

Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a rare primary immunodeficiency disorder characterized by recurrent infections and low immunoglobulin levels due to variable combined immunodeficiency, and centromeric region instability, and facial dysmorphism. We describe a 12-year-old boy with recurrent respiratory tract infections, facial anomalies, scoliosis, and psychomotor retardation. He had recurrent pneumonia with low serum IgG and IgM levels during infancy and preschool age. Later at the age of 10, he developed recurrent ear infections. An IgA and IgM deficiency was found accompanied by a normal B-cell and T-cell count as well as an impaired candida-induced T-cell proliferation. Further evaluations revealed a missense mutation in the DNMT3B gene on chromosome 20. Chromosomal analysis showed a sunburst multi-radial feature on chromosome 1, which is a hallmark of ICF syndrome. The genetic mutation and chromosomal abnormality along with clinical findings are compatible with the diagnosis of ICF syndrome. To the best of our knowledge, this is the first time that scoliosis is observed in an ICF patient. The additional variable clinical symptoms in the case were the presence of spastic gait as well as hypogammaglobulinemia with immunoglobulin isotype switch at different ages.


Assuntos
Centrômero , Instabilidade Cromossômica , Face/anormalidades , Síndromes de Imunodeficiência , Escoliose , Criança , DNA (Citosina-5-)-Metiltransferases/genética , Transtornos Neurológicos da Marcha/sangue , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/imunologia , Humanos , Imunoglobulinas/sangue , Síndromes de Imunodeficiência/sangue , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Masculino , Mutação de Sentido Incorreto , Pelve/anormalidades , Escoliose/sangue , Escoliose/genética , Escoliose/imunologia , DNA Metiltransferase 3B
11.
Hum Mol Genet ; 30(1): 5-20, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33395696

RESUMO

FEZ1-mediated axonal transport plays important roles in central nervous system development but its involvement in the peripheral nervous system is not well-characterized. FEZ1 is deleted in Jacobsen syndrome (JS), an 11q terminal deletion developmental disorder. JS patients display impaired psychomotor skills, including gross and fine motor delay, suggesting that FEZ1 deletion may be responsible for these phenotypes, given its association with the development of motor-related circuits. Supporting this hypothesis, our data show that FEZ1 is selectively expressed in the rat brain and spinal cord. Its levels progressively increase over the developmental course of human motor neurons (MN) derived from embryonic stem cells. Deletion of FEZ1 strongly impaired axon and dendrite development, and significantly delayed the transport of synaptic proteins into developing neurites. Concurring with these observations, Drosophila unc-76 mutants showed severe locomotion impairments, accompanied by a strong reduction of synaptic boutons at neuromuscular junctions. These abnormalities were ameliorated by pharmacological activation of UNC-51/ATG1, a FEZ1-activating kinase, with rapamycin and metformin. Collectively, the results highlight a role for FEZ1 in MN development and implicate its deletion as an underlying cause of motor impairments in JS patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/genética , Transtornos Neurológicos da Marcha/genética , Síndrome da Deleção Distal 11q de Jacobsen/genética , Proteínas do Tecido Nervoso/genética , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Transporte Axonal/genética , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Síndrome da Deleção Distal 11q de Jacobsen/fisiopatologia , Locomoção/genética , Locomoção/fisiologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Neurogênese/genética , Ratos
12.
Top Stroke Rehabil ; 28(1): 72-80, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32378476

RESUMO

Background: Motor deficits after stroke are a primary cause of long-term disability. The extent of functional recovery may be influenced by genetic polymorphisms. Objectives: Determine the effect of genetic polymorphisms for brain-derived neurotrophic factor (BDNF), catechol-O-methyltransferase (COMT), and apolipoprotein E (APOE) on walking speed, walking symmetry, and ankle motor control in individuals with chronic stroke. Methods: 38 participants with chronic stroke were compared based upon genetic polymorphisms for BDNF (presence [MET group] or absence [VAL group] of a Met allele), COMT (presence [MET group] or absence [VAL group] of a Met allele), and APOE (presence [ε4+ group] of absence [ε4- group] of ε4 allele). Comfortable and maximal walking speed were measured with the 10-m walk test. Gait spatiotemporal symmetry was measured with the GAITRite electronic mat; symmetry ratios were calculated for step length, step time, swing time, and stance time. Ankle motor control was measured as the accuracy of performing an ankle tracking task. Results: No significant differences were detected (p ≥ 0.11) between the BDNF, COMT, or APOE groups for any variables. Conclusions: In these preliminary findings, genetic polymorphisms for BDNF, COMT, and APOE do not appear to affect walking speed, walking symmetry, or ankle motor performance in chronic stroke.


Assuntos
Apolipoproteínas E/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Catecol O-Metiltransferase/genética , Transtornos Neurológicos da Marcha/genética , Transtornos dos Movimentos/genética , Polimorfismo Genético , Acidente Vascular Cerebral/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Tornozelo , Chicago/epidemiologia , Doença Crônica , Estudos Transversais , Feminino , Transtornos Neurológicos da Marcha/epidemiologia , Transtornos Neurológicos da Marcha/patologia , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/epidemiologia , Transtornos dos Movimentos/patologia , Prognóstico , Adulto Jovem
13.
Parkinsonism Relat Disord ; 81: 173-178, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161290

RESUMO

OBJECTIVE: To investigate the association between Apolipoprotein E (APOE) genotype and freezing of gait (FOG) in Parkinson's disease (PD). METHODS: This cohort study included 339 early PD patients who were divided into APOE ε4-positive (n = 88) and ε4-negative (n = 251) groups. They were followed-up for up to 6 years to identify the development of FOG. To investigate the influence of CSF ß-amyloid 1-42 (Aß42) on the association between APOE ε4 and FOG, the patients were additionally dichotomized into "high-level" and "low-level" groups using three different cutoff values for the CSF Aß42 levels. RESULTS: At baseline, the APOE ε4-positive group had lower CSF Aß42 levels than the APOE ε4-negative group. During a median follow-up of 5.0 years, the APOE ε4-positive group had a higher incidence of FOG than the APOE ε4-negative group. In the multivariable Cox model excluding CSF Aß42, APOE ε4 was a significant predictor of FOG. However, after adding CSF Aß42 in the model, APOE ε4 did not survive, whereas lower CSF Aß42 levels were associated with FOG. In the subgroup analyses, the effect of the APOE ε4 allele was not found in the "low-level" group. However, in the "high-level" group, the APOE ε4 allele independently increased the risk of FOG, and this association was stronger than the association with CSF Aß42. CONCLUSION: The APOE ε4 allele may be a novel genetic risk factor for FOG in PD. This association seemed to be mainly mediated by Aß-dependent pathways, but its Aß-independent effects might also contribute to the development of FOG.


Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteína E4/genética , Transtornos Neurológicos da Marcha , Doença de Parkinson , Fragmentos de Peptídeos/líquido cefalorraquidiano , Idoso , Feminino , Transtornos Neurológicos da Marcha/líquido cefalorraquidiano , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia
14.
Exp Neurol ; 333: 113430, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32745471

RESUMO

High-capacity mitochondrial calcium (Ca2+) uptake by the mitochondrial Ca2+ uniporter (MCU) is strategically positioned to support the survival and remyelination of axons in multiple sclerosis (MS) by undocking mitochondria, buffering Ca2+ and elevating adenosine triphosphate (ATP) synthesis at metabolically stressed sites. Respiratory chain deficits in MS are proposed to metabolically compromise axon survival and remyelination by suppressing MCU activity. In support of this hypothesis, clinical scores, mitochondrial dysfunction, myelin loss, axon damage and inflammation were elevated while remyelination was blocked in neuronal MCU deficient (Thy1-MCU Def) mice relative to Thy1 controls subjected to experimental autoimmune encephalomyelitis (EAE). At the first sign of walking deficits, mitochondria in EAE/Thy1 axons showed signs of activation. By contrast, cytoskeletal damage, fragmented mitochondria and large autophagosomes were seen in EAE/Thy1-MCU Def axons. As EAE severity increased, EAE/Thy1 axons were filled with massively swollen mitochondria with damaged cristae while EAE/Thy1-MCU Def axons were riddled with late autophagosomes. ATP concentrations and mitochondrial gene expression were suppressed while calpain activity, autophagy-related gene mRNA levels and autophagosome marker (LC3) co-localization in Thy1-expressing neurons were elevated in the spinal cords of EAE/Thy1-MCU Def compared to EAE/Thy1 mice. These findings suggest that MCU inhibition contributes to axonal damage that drives MS progression.


Assuntos
Canais de Cálcio/deficiência , Encefalomielite Autoimune Experimental/patologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/deficiência , Bainha de Mielina/patologia , Neurônios/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Autofagia/genética , Axônios/patologia , Canais de Cálcio/genética , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/patologia , Expressão Gênica/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Dilatação Mitocondrial , Fagossomos/patologia , Medula Espinal/patologia
15.
Neurotherapeutics ; 17(4): 1366-1377, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32749651

RESUMO

Early descriptions of subtypes of Parkinson's disease (PD) are dominated by the approach of predetermined groups. Experts defined, from clinical observation, groups based on clinical or demographic features that appeared to divide PD into clinically distinct subsets. Common bases on which to define subtypes have been motor phenotype (tremor dominant vs akinetic-rigid or postural instability gait disorder types), age, nonmotor dominant symptoms, and genetic forms. Recently, data-driven approaches have been used to define PD subtypes, taking an unbiased statistical approach to the identification of PD subgroups. The vast majority of data-driven subtyping has been done based on clinical features. Biomarker-based subtyping is an emerging but still quite undeveloped field. Not all of the subtyping methods have established therapeutic implications. This may not be surprising given that they were born largely from clinical observations of phenotype and not in observations regarding treatment response or biological hypotheses. The next frontier for subtypes research as it applies to personalized medicine in PD is the development of genotype-specific therapies. Therapies for GBA-PD and LRRK2-PD are already under development. This review discusses each of the major subtyping systems/methods in terms of its applicability to therapy in PD, and the opportunities and challenges designing clinical trials to develop the evidence base for personalized medicine based on subtypes.


Assuntos
Doença de Parkinson/genética , Doença de Parkinson/terapia , Biomarcadores , Transtornos Neurológicos da Marcha/classificação , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/terapia , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Transtornos Motores/classificação , Transtornos Motores/diagnóstico , Transtornos Motores/genética , Transtornos Motores/terapia , Doença de Parkinson/classificação , Doença de Parkinson/diagnóstico
16.
Hum Mol Genet ; 29(14): 2408-2419, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32588892

RESUMO

Cyclin-dependent kinase-like 5 (CDKL5), a serine-threonine kinase encoded by an X-linked gene, is highly expressed in the mammalian forebrain. Mutations in this gene cause CDKL5 deficiency disorder, a neurodevelopmental encephalopathy characterized by early-onset seizures, motor dysfunction, and intellectual disability. We previously found that mice lacking CDKL5 exhibit hyperlocomotion and increased impulsivity, resembling the core symptoms in attention-deficit hyperactivity disorder (ADHD). Here, we report the potential neural mechanisms and treatment for hyperlocomotion induced by CDKL5 deficiency. Our results showed that loss of CDKL5 decreases the proportion of phosphorylated dopamine transporter (DAT) in the rostral striatum, leading to increased levels of extracellular dopamine and hyperlocomotion. Administration of methylphenidate (MPH), a DAT inhibitor clinically effective to improve symptoms in ADHD, significantly alleviated the hyperlocomotion phenotype in Cdkl5 null mice. In addition, the improved behavioral effects of MPH were accompanied by a region-specific restoration of phosphorylated dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa, a key signaling protein for striatal motor output. Finally, mice carrying a Cdkl5 deletion selectively in DAT-expressing dopaminergic neurons, but not dopamine receptive neurons, recapitulated the hyperlocomotion phenotype found in Cdkl5 null mice. Our findings suggest that CDKL5 is essential to control locomotor behavior by regulating region-specific dopamine content and phosphorylation of dopamine signaling proteins in the striatum. The direct, as well as indirect, target proteins regulated by CDKL5 may play a key role in movement control and the therapeutic development for hyperactivity disorders.


Assuntos
Síndromes Epilépticas/genética , Hipercinese/genética , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis/genética , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Síndromes Epilépticas/patologia , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/metabolismo , Transtornos Neurológicos da Marcha/patologia , Humanos , Hipercinese/metabolismo , Hipercinese/patologia , Metilfenidato/metabolismo , Camundongos , Camundongos Knockout , Espasmos Infantis/patologia
17.
EBioMedicine ; 55: 102700, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32192914

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is caused by the loss of dystrophin. Severe and ultimately lethal, DMD progresses relatively slowly in that patients become wheelchair bound only around age twelve with a survival expectancy reaching the third decade of life. METHODS: The mildly-affected mdx mouse model of DMD, and transgenic DysΔMTB-mdx and Fiona-mdx mice expressing dystrophin or utrophin, respectively, were exposed to either mild (scruffing) or severe (subordination stress) stress paradigms and profiled for their behavioral and physiological responses. A subgroup of mdx mice exposed to subordination stress were pretreated with the beta-blocker metoprolol. FINDINGS: Subordination stress caused lethality in ∼30% of mdx mice within 24 h and ∼70% lethality within 48 h, which was not rescued by metoprolol. Lethality was associated with heart damage, waddling gait and hypo-locomotion, as well as marked up-regulation of the hypothalamus-pituitary-adrenocortical axis. A novel cardiovascular phenotype emerged in mdx mice, in that scruffing caused a transient drop in arterial pressure, while subordination stress caused severe and sustained hypotension with concurrent tachycardia. Transgenic expression of dystrophin or utrophin in skeletal muscle protected mdx mice from scruffing and social stress-induced responses including mortality. INTERPRETATION: We have identified a robust new stress phenotype in the otherwise mildly affected mdx mouse that suggests relatively benign handling may impact the outcome of behavioural experiments, but which should also expedite the knowledge-based therapy development for DMD. FUNDING: Greg Marzolf Jr. Foundation, Summer's Wish Fund, NIAMS, Muscular Dystrophy Association, University of Minnesota and John and Cheri Gunvalson Trust.


Assuntos
Distrofina/genética , Transtornos Neurológicos da Marcha/mortalidade , Insuficiência Cardíaca/mortalidade , Distrofia Muscular de Duchenne/mortalidade , Estresse Psicológico/mortalidade , Utrofina/genética , Antagonistas Adrenérgicos beta/farmacologia , Animais , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Distrofina/metabolismo , Transtornos Neurológicos da Marcha/complicações , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/fisiopatologia , Expressão Gênica , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipotensão/complicações , Hipotensão/genética , Hipotensão/mortalidade , Hipotensão/fisiopatologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Masculino , Metoprolol/farmacologia , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatologia , Estresse Psicológico/complicações , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia , Análise de Sobrevida , Taquicardia/complicações , Taquicardia/genética , Taquicardia/mortalidade , Taquicardia/fisiopatologia , Transgenes , Utrofina/metabolismo
18.
Sci Rep ; 10(1): 3295, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094424

RESUMO

Hereditary spastic paraplegia (HSP) is a heterogeneous inherited disorder that manifests with lower extremity weakness and spasticity. HSP can be inherited by autosomal dominant, autosomal recessive, and X-linked inheritance patterns. Recent studies have shown that, although rare, mutations in a single gene can lead to multiple patterns of inheritance of HSP. We enrolled the HSP family showing autosomal dominant inheritance and performed genetic study to find the cause of phenotype in this family. We recruited five members of a Korean family as study participants. Four of the five family members had pure HSP. Part of the family members underwent whole-exome sequencing (WES) to identify the causative mutation. As the result of WES and Sanger sequencing analysis, a novel missense mutation (c.452 C > T, p.Ala151Val) of ERLIN2 gene was identified as the cause of the autosomal dominant HSP in the family. Our study suggests that the ERLIN2 gene leads to both autosomal recessive and autosomal dominant patterns of inheritance in HSP. Moreover, autosomal dominant HSP caused by ERLIN2 appears to cause pure HSP in contrast to autosomal recessive ERLIN2 related complicated HSP (SPG18).


Assuntos
Proteínas de Membrana/genética , Mutação , Paraplegia Espástica Hereditária/genética , Idoso , Exoma , Feminino , Transtornos Neurológicos da Marcha/genética , Genes Dominantes , Genes Recessivos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/genética , Mutação de Sentido Incorreto , Linhagem , Fenótipo , República da Coreia , Análise de Sequência de DNA , Sequenciamento do Exoma
19.
Brain ; 143(1): 14-30, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647540

RESUMO

Diverse but complementary methodologies are required to uncover the complex determinants and pathophysiology of freezing of gait. To develop future therapeutic avenues, we need a deeper understanding of the disseminated functional-anatomic network and its temporally associated dynamic processes. In this targeted review, we will summarize the latest advances across multiple methodological domains including clinical phenomenology, neurogenetics, multimodal neuroimaging, neurophysiology, and neuromodulation. We found that (i) locomotor network vulnerability is established by structural damage, e.g. from neurodegeneration possibly as result from genetic variability, or to variable degree from brain lesions. This leads to an enhanced network susceptibility, where (ii) modulators can both increase or decrease the threshold to express freezing of gait. Consequent to a threshold decrease, (iii) neuronal integration failure of a multilevel brain network will occur and affect one or numerous nodes and projections of the multilevel network. Finally, (iv) an ultimate pathway might encounter failure of effective motor output and give rise to freezing of gait as clinical endpoint. In conclusion, we derive key questions from this review that challenge this pathophysiological view. We suggest that future research on these questions should lead to improved pathophysiological insight and enhanced therapeutic strategies.


Assuntos
Encéfalo/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Doença de Parkinson/fisiopatologia , Apolipoproteína E4/genética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Citocromo P-450 CYP2D6/genética , Neuroimagem Funcional , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/genética , Glucosilceramidase/genética , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Imageamento por Ressonância Magnética , Mutação , Vias Neurais/fisiopatologia , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Tomografia por Emissão de Pósitrons , Receptores de Dopamina D2/genética , Tomografia Computadorizada de Emissão de Fóton Único
20.
Antioxid Redox Signal ; 32(17): 1259-1272, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31847534

RESUMO

Aims: In this original research communication, we assess the impact of shifting the window of glial HMOX1 overexpression in mice from early-to-midlife to mid-to-late life, resulting in two disparate conditions modeling schizophrenia (SCZ) and Parkinson's disease (PD). Mesolimbic hyperdopaminergia is a widely accepted feature of SCZ, while nigrostriatal hypodopaminergia is the sine qua non of idiopathic PD. Although the advent of parkinsonian features in SCZ patients after treatment with antidopaminergic agents is intuitive, subtle features of parkinsonism commonly observed in young, drug-naïve schizophrenics are not. Similarly, emergent psychosis in PD subjects receiving levodopa replacement is not unusual, whereas spontaneous hallucinosis in nonmedicated persons with idiopathic PD is enigmatic. Investigations using GFAP.HMOX1 mice may shed light on these clinical paradoxes. Results: Astroglial heme oxygenase-1 (HO-1) overexpression in mice throughout embryogenesis until 6 or 12 months of age resulted in hyperdopaminergia, hyperkinesia/stereotypy ameliorated with clozapine, deficient prepulse inhibition of the acoustic startle response, reduced preference for social novelty, impaired nest building, and cognitive dysfunction reminiscent of SCZ. On the contrary, astroglial HO-1 overexpression between 8.5 and 19 months of age yielded a PD-like behavioral phenotype with hypodopaminergia, altered gait, locomotor incoordination, and reduced olfaction. Innovation: We conjecture that region-specific disparities in the susceptibility of dopaminergic and other circuitry to the trophic and degenerative influences of glial HMOX1 induction may permit the concomitant expression of mixed SCZ and PD traits within affected individuals. Conclusion: Elucidation of these converging mechanisms may (i) help better understand disease pathogenesis and (ii) identify HO-1 as a potential therapeutic target in neurodevelopmental and neurodegenerative disorders.


Assuntos
Ataxia/genética , Transtornos Neurológicos da Marcha/genética , Heme Oxigenase-1/genética , Neuroglia/enzimologia , Doença de Parkinson/genética , Esquizofrenia/genética , Animais , Ataxia/metabolismo , Ataxia/patologia , Modelos Animais de Doenças , Transtornos Neurológicos da Marcha/metabolismo , Transtornos Neurológicos da Marcha/patologia , Heme Oxigenase-1/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Neuroglia/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Olfato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA